Georgia's Renewable Energy Technical Assistance Program and Model Solar Ordinance

On-farm energy solutions for Georgia

ReTAP – Renewable Energy Technical Assistance Program

- Funding from USDA Rural Development
- Technical Assistance for Renewable Energy Projects
- Community and Individualized Education
- Focus on solar but includes all renewable energy projects

Agriculture Technical Assistance Program

at the University of Georgia

Solar and Agriculture – Smart Development

- Solar and Agriculture can coexist
- Marginal lands are best for solar
- Wildlife and other natural resources need to be considered
- <2% of farmland would need to be converted to supply 100% of US electricity demand¹

¹Southern Environmental Law Center, *Solar Power & Local Communities, https://www.southernenvironment.org/uploads/words_docs/SolarLocalComm_Handout_0217_F.pdf.*

Solar Project Economics

- Historically low panel prices
 - ~\$1.03/watt industrial scale
 - ~\$1.85/watt for commercial
 - ~\$2.98/watt residential
- Conventional financing viable for solar projects
- Tax credits, grant programs and loan programs
- Georgia Power and EMCs expanding programs

GREEN POWER EMC MEMBERS' RENEWABLE ENERGY PROJECTS

USDA REAP Grants and Loans

- Loan guarantees on loans up to 75% of total eligible project costs
- Grants for up to 25% of total eligible project costs (\$500,000 max)
- Combined grant and loan guarantee funding up to 75% of total eligible project costs
- Applies to renewable energy, energy conservation for producers in RURAL areas
- Grant awards are TAXABLE income (Reduces the amount you can write off for investment)

Solar Project Economics – Income

- Solar Investment Tax Credit (ITC)
- Currently 30% CREDIT
- Residential and Commercial through 2021
- Commercial 10% Permanent

Georgia Power Integrated Resource Plan

Highlights of Renewable Energy Development Initiative (REDI)

- Authorized in 2016
- Focus on utility-scale, but has provisions for commercial, industrial and distributed scale
 - 2017 target = 525 MW
 - 2019 target = 525 MW
 - Additional distributed generation (rooftop) scale = 150 MW
 - Additional Commercial & Industrial projects = 200 MW
- Must be at cost-parity with long-term, least cost alternative

US Context for Solar

TOP 10 SOLAR STATES-REMIXED

Source: SEIA, Solar Energy Industries Association \https://www.seia.org/research-resources/top-10-solar-states

The Southeast includes: GA, FL, TN, NC, SC, AL, MS

Total share of solar:

- 0.6% of generation in the entire SE
- 3.1% of generation in NC
- 0.8% of generation in GA
- NC accounts for 68% of SE Solar

ReTAP – Example Projects

- Solar Site Assessment
- Solar Proposal Review
- Biofuel Technical Assistance
- Education Programs for Solar Communities

DC Subarrays

To model a system with one array, spedly properties for Subarray 1 and disable Subarrays 2, 8, and 4. To model a system with up to four subarrays connected in parallel to a single bank of investers, for each subarray, check 1 nable and specify a number of strings and other properties.

	Subarray 1	Subarray 2	Subarray 3	Subarray 4
tring Configuration				_
Strings in array 2	(always enabled)	Enable	Enable	Cnable
Strings allocated to subarra	y 2	0	0	
racking & Orientation				
	Fixed	Fixed	Fixed	Fixed
Acrosh Tit N=0	🔿 1 Axis	🔾 1 Axis	🔾 1 Axis	🔾 1 Axis
1111 (No.	🔿 2 Axis	🔿 2 Axis	🔿 2 Axis	🔾 2 Axis
and the second	C Azimuth Axis	 Azimuth Axis 	O Azimuth Axis	🔿 Azimuth Axis
sta	C Seasonal Tilt	C Seasonal Tilt	 Seasonal Tit 	🔿 Seasonal Tilt
	L lilt-latitude	Lit-latitude	lilt-latitude	Lit-latitude
Tilt (deg)	20	20	20	20
Azimuth (deg)	180	180	180	180
Ground coverage ratio (GCR)	0.3	0.3	0.3	0.1
Tracker rotation limit (deg)	45	45	45	43
Backtracking	Enable	Enable	Enable	Enable

the Shading page, and (3) in the total land area calculation. See Help for details.

The Georgia Solar Model Ordinance (MSO) University Team

Dan Geller	UGA
Mindy Goldstein	Emory
Mary Hallisey	GT
Kerri Metz	GT
Marcela Moreno	GT
Jason Perry	UGA
Caroline Reiser	Emory
Richard Simmons	GT

Objective

- Accelerate *smart* growth of solar in Georgia through development of a model ordinance and accompanying guide
 - Encourage solar development while protecting community culture and the environment
 - Foster appropriate siting without undue barriers to development
 - Help prevent poorly sited projects that could hamper further growth of solar
- Provide fact-based resources about solar development to decision-makers, planners, communities, and developers
- Identify realistic impacts of solar development to help avoid potential conflicts

Timeline

April – October 2017	University team coordination – initial scoping, planning, and research.	
August 2017	Draft Template published.	
November 2017	Pre-brief meeting held.	
December 2017	Initial feedback on Draft Model Ordinance Outline & Excerpts gathered.	
February 2018	Draft Model Ordinance published.	
February – April 2018	Stakeholder meetings convened. Feedback on the Draft Model Ordinance gathered.	
May – June 2018	Model Ordinance and Guide finalized, taking into account stakeholder input.	
July 2018	Final Model Ordinance and Guide published.	

Research Team Process

Engage • Reflected on Conducted comments, conduct background additional research, research on solar Obtained make substantive energy systems stakeholder changes review and feedback Study Improve

What is a Zoning Ordinance?

A ZONING ORDINANCE CAN

- Define what size and type of solar facilities can be located in different parts of the county or city
- Provide facility setbacks and height limitations
- Protect against nuisance and aesthetics concerns
- Define and prescribe site plan requirements

A ZONING ORDINANCE CANNOT

- Alter existing facilities
- Resolve issues related to taxes and tariffs
- Address every legal barrier to solar facilities
- Address state and federal permitting requirements
- Prescribe individual lease or finance terms

The Model Ordinance and Guide

Permissive, but with reasonable limitations

• Focus on

- Community Character
- Environmental Integrity
- Optimizing Land Use

Wildlife

Model

 Systems that require permits must provide information on species potentially on or next to property

Guide

- Main potential impacts of solar development
- Specific species of concern
- Best practices for siting and mitigation

Photo from https://commons.wikimedia.org/wiki/File:Foraging_Gopher_Tortoise_(5960563007).jpg.

Trees and Forests

Photo by Mark Merner, https://unsplash.com/license.

Model

- Avoid removal to extent reasonably practicable
- Comply with existing tree ordinance
- Systems that require permits must provide information on existing tree cover

Guide

- State of forests in Georgia
- Potential conflicts, but trees and solar can coexist
- Best practices for encouraging trees and solar

Optimizing Land Use

- Developed and degraded land
- Dual land use
- Agricultural land

Photo from https://commons.wikimedia.org/wiki/File:Antioch_College_solar_sheep.JPG.

Publishing and Implementing

The Model Ordinance and Guide are available online at: http://www.energy.gatech.edu/model-solar-ordinance